A Direct Numerical Simulation-Based Analysis of Entropy Generation in Turbulent Premixed Flames

نویسندگان

  • Richard Farran
  • Nilanjan Chakraborty
چکیده

A compressible single step chemistry Direct Numerical Simulation (DNS) database of freely propagating premixed flames has been used to analyze different entropy generation mechanisms. The entropy generation due to viscous dissipation within the flames remains negligible in comparison to the other mechanisms of entropy generation. It has been found that the entropy generation increases significantly due to turbulence and the relative magnitudes of the augmentation of entropy generation and burning rates under turbulent conditions ultimately determine the value of turbulent second law efficiency in comparison to the corresponding laminar values. It has been found that the entropy generation mechanisms due to chemical reaction, thermal conduction and mass diffusion in turbulent flames strengthen with decreasing global Lewis number in comparison to the corresponding values in laminar flames. The ratio of second law efficiency under turbulent conditions to its corresponding laminar value has been found to decrease with increasing global Lewis number. An increase in heat release parameter significantly augments the entropy generation due to thermal conduction, whereas other mechanisms of entropy generation are marginally affected. However, the effects of augmented entropy generation due to thermal conduction at high values of heat release parameter are eclipsed by the increased change in availability due to chemical reaction, which leads to an increase in the second law efficiency with increasing heat release parameter for identical flow conditions. The combustion regime does not have any major influence on the augmentation of entropy generation due to chemical reaction, thermal conduction and mass diffusion in turbulent flames in comparison to corresponding laminar flames, whereas the extent of augmentation of entropy generation due to viscous dissipation in turbulent conditions in comparison to OPEN ACCESS Entropy 2013, 15 1541 corresponding laminar flames, is more significant in the thin reaction zones regime than in the corrugated flamelets regime. However, the ratio of second law efficiency under turbulent conditions to its corresponding laminar value does not get significantly affected by the regime of combustion, as viscous dissipation plays a marginal role in the overall entropy generation in premixed flames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air

The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding ...

متن کامل

Measurements of Conditional Velocities in Turbulent Premixed Flames by Simultaneous OH PLIF and PIV

Joint velocity/scalar imaging measurements are performed in turbulent premixed natural-gas/air flames to better characterize the turbulent flux of mean reaction progress variable, ru0c0. Simultaneous two-dimensional measurements of the velocity field and the relative OH concentration are obtained by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical,...

متن کامل

A Rigorous Asymptotic Perspective on the Large Scale Simulations of Turbulent Premixed Flames

An idealized model for turbulent premixed flames is introduced. It consists of a scalar advection-reaction-diffusion equation that describes the interaction of a thin flame with a turbulentlike flow field acting on two separate scales. Rigorous asymptotic results as well as affordable and reliable direct numerical simulations are available to predict the effective large scale behavior of the id...

متن کامل

On the Use of a Dynamically Adaptive Wavelet Collocation Algorithm in Direct Numerical Simulations of Non-Premixed Turbulent Combustion

The ability to model non-premixed combustion is very important; many practical combustion devices operate with non-premixed flames in the presence of turbulent flows (Vervisch & Poinsot, 1998). Non-premixed turbulent flames are characterized by a large spectrum of temporal and length scales. Additional complexity is added by the large number of unknowns and by the stiffness of highly nonlinear ...

متن کامل

Influence of Preferential Diffusion in Turbulent Lean Premixed Hydrogen-Rich Syngas Spherical Flames at Elevated Pressure

The objective of this work was to investigate the influence of preferential diffusion on flame structure and propagation of lean-premixed hydrogen-carbon monoxide syngas-air flame at elevated pressure using direct numerical simulation (DNS) and detailed chemistry. The physical problem investigated is lean-premixed H2/CO outwardly propagating turbulent spherical flame at constant pressure of 4ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013